Heating of Pickup and Solar Wind Ions at Jupiter's Bow Shock
نویسندگان
چکیده
Interstellar pickup ions are dynamically important in the outer heliosphere where they mass-load and heat the solar wind. Some of these pickup ions are transformed into energetic neutral atoms (ENAs) by charge exchange with the residual cold interstellar gas that is the primary constituent of the outer heliosphere. The most detailed measurements of interstellar pickup ions in the heliosphere are currently available only between ~1 and ~5 AU. Among the most interesting and least expected observations are those of ubiquitous suprathermal tails on the distribution of pickup and solar wind protons and all heavier ions that can be measured. Here we report new measurements of solar wind proton and alpha particle distributions and of pickup He+ spectra upstream and downstream of Jupiter's bow shock. We find that in the magnetosheath, 27% of the total pickup H+ density is in the tail portion of the distribution, compared to only 0.4% in the upstream spectrum. For He+ the entire core distribution is apparently heated in crossing the shock. These results have important implications for particle acceleration at the heliospheric termination shock, and for predicting the fluxes of energetic neutral atoms in the inner heliosphere produced from solar wind and pickup ions heated and accelerated at the termination shock.
منابع مشابه
Juno‐UVS approach observations of Jupiter's auroras
Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we com...
متن کاملActive current sheets and candidate hot flow anomalies upstream of Mercurys bow shock
Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of the motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic fiel...
متن کاملComparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars
Foreshock ions are compared between Venus and Mars at energies of 0.6∼20 keV using the same ion instrument, the Ion Mass Analyser, on board both Venus Express and Mars Express. Venus Express often observes accelerated protons (2∼6 times the solar wind energy) that travel away from the Venus bow shock when the spacecraft location is magnetically connected to the bow shock. The observed ions have...
متن کاملPickup Protons and Water Ions at Comet Halley Comparisons with Giotto Observations
A quasi-linear diffusion model including both pitch angle and energy diffusion, adiabatic ompression and convective motion with the solar wind flow has been used to investigate the cometary ion pickup process along the Sun-comet line at comet Halley. The total pickup ion densities and magnetic turbulence spectrum levels observed by Giotto were used to constrain the quasi-linear model. Compariso...
متن کاملHeating of the Solar Wind Beyond 1 AUby
The deposition of energy into the solar wind beyond 1 AU is thought to result from the dissipation of low frequency magnetohydrodynamic (MHD) turbulence via kinetic processes at spatial scales comparable to the ion gyroradius. Beyond 1 AU, solar wind turbulence is comprised of both a decaying component generated in the corona and turbulence generated dynamically in situ by processes such as str...
متن کامل